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Abstract. We developed a general-purpose multivariate decomposition command
for nonlinear response models that incorporates several recent contributions to
overcome various problems dealing with path dependence and identification. This
work extends existing Stata packages in important ways by including additional
models and allowing for weights and model offsets.
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1 Introduction

Multivariate decomposition is widely used in social research to quantify the contribu-
tions to group differences in average predictions from multivariate models. The tech-
nique uses the output from regression models to partition the components of a group
difference in a statistic, such as a mean or proportion, into a component attributable
to compositional differences between groups (that is, differences in characteristics or
endowments) and a component attributable to differences in the effects of character-
istics (that is, differences in the returns, coefficients, or behavioral responses). These
techniques are equally applicable for partitioning change over time into components
attributable to changing effects and changing composition.

c© 2011 StataCorp LP st0241
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In this article, we introduce a new Stata command, mvdcmp, for carrying out mul-
tivariate decomposition for different models, including the classical linear model, pro-
bit, logit, complementary log-log, Poisson regression, and negative binomial regression.
mvdcmp is comparable to several existing Stata packages, including oaxaca (Jann 2008),
gdecomp (Bartus 2006), fairlie (Jann 2006), and nldecompose (Sinning, Hahn, and
Bauer 2008).1 One feature of mvdcmp is that it provides the detailed decomposition and
standard errors for both the characteristics component and the coefficient component
for various models.

mvdcmp is primarily intended for use in nonlinear decomposition and is based on
recent contributions, which include convenient methods to handle path dependency
(Yun 2004), computing asymptotic standard errors (Yun 2005a), and overcoming the
identification problem associated with the choice of a reference category when dummy
variables are included among the predictors (Yun 2005b, 2008). This article is organized
as follows: section 2 describes our general approach to aggregate and detailed decom-
position, section 3 provides several illustrative examples, and section 4 outlines some
possible extensions and future plans for this project.

2 Multivariate decomposition

Decomposition techniques for linear regression models have been used for decades. This
heterogeneous collection of techniques is more generally referred to as regression stan-
dardization (Althauser and Wigler 1972; Duncan 1969; Duncan, Featherman, and Dun-
can 1968; Coleman and Blum 1971; Coleman, Berry, and Blum 1971; Winsborough and
Dickinson 1971). Oaxaca (1973) and Blinder (1973) are usually credited with introduc-
ing regression decomposition in the econometric literature in the early 1970s. Although
their methods are formally identical to those developed in sociology and demography, the
technique has become more commonly known as Oaxaca–Blinder, Oaxaca, or Blinder–
Oaxaca decomposition.

Regression decomposition has been extended to nonlinear models, including pro-
bit models (Gomulka and Stern 1990; Even and Macpherson 1993; Pritchett and Yun
2009), logit models (Fairlie 2005; Nielsen 1998; Bowblis and Yun 2010), count models
(see, for example, Bauer, Göhlmann, and Sinning [2007]; Park and Lohr [2010]), and
hazard rate models (Powers and Yun 2009). For linear regression, logit, and count
models, the observed difference in group means, proportions, or counts (that is, a
difference in the “first moment”) is additively decomposed into a characteristics (or
endowments) component and a coefficient (or effects) component. In any given applica-

1. The fairlie command decomposes a difference in proportions based on logit or probit models into
the characteristics portion only. gdecomp provides for both components and extends to models
for count data but with a different decomposition scheme from that implemented in mvdcmp and
without the ability to incorporate model weights and offsets. The nldecompose command handles
a variety of nonlinear models but does not carry out a detailed decomposition. oaxaca decomposes
differences in means using results from the classical linear model, as well as differences in proportions
from logit and probit models, with options to provide normalized solutions for dummy variables,
covariate grouping, weighting, and survey design adjustments.
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tion, a researcher may be interested in either of these components, such as the portion
of the total differential that could be attributed to compositional differences between
groups or the change in characteristics over time for a single group (for example, see
Even and Macpherson [1993]; Nielsen [1998]).

2.1 Overall decomposition

We begin with the standard problem of decomposing a difference in first moments in
which the dependent variable is a function of a linear combination of predictors and
regression coefficients:

Y = F (Xβ)

where Y denotes the N × 1 dependent variable vector, X is an N ×K matrix of inde-
pendent variables, and β is a K×1 vector of coefficients. F (·) is any once-differentiable
function mapping a linear combination of X (Xβ) to Y (see table 1). The mean differ-
ence in Y between groups A and B can be decomposed as

Y A − Y B = F (XAβA)− F (XBβB)

=
{

F (XAβA)− F (XBβA)
}

︸ ︷︷ ︸
E

+
{

F (XBβA)− F (XBβB)
}

︸ ︷︷ ︸
C

(1)

The component labeled E refers to the part of the differential attributable to differences
in endowments or characteristics, usually called the explained component or character-
istics effects. The C component refers to the part of the differential attributable to
differences in coefficients or effects, usually called the unexplained component or coef-
ficients effects. In (1), we have chosen group A as the comparison group and group B
as the reference group. Thus E reflects a counterfactual comparison of the difference
in outcomes from group A’s perspective (that is, the expected difference if group A
were given group B’s distribution of covariates). C reflects a counterfactual comparison
of outcomes from group B’s perspective (that is, the expected difference if group B
experienced group A’s behavioral responses to X).2

2. Only a standard two-way decomposition is available in mvdcmp. Alternative decomposition methods
partial out the EC interaction as a third component.
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Table 1. Mapping of X to Y for mvdcmp models

Negative Complementary
Linear Logit Probit† Poisson binomial‡ log-log

F (Xβ) Xβ eXβ

1+eXβ Φ(Xβ) eXβ eXβ 1− e{−eXβ}

† Φ(·) denotes the cumulative normal distribution function.

‡ includes a gamma-distributed random effect to account for extra Poisson variation

(that is, overdispersion).

The same differential (with a change in sign) can be obtained from an alternative
decomposition that switches the roles of the reference and comparison groups. This is
called the “indexing” problem (Neumark 1988; Oaxaca and Ransom 1988, 1994). By
fixing the coefficients in the composition component to group A levels, we assess the
contribution to the differential that would have occurred if the behavioral responses to
the characteristics were fixed to the values in group A. By fixing characteristics to group
B levels in the coefficient component, we assess the contribution to the differential that
is due to the difference in effects. An equivalent decomposition would reverse this proce-
dure. That is, we could perform a different decomposition by weighting the composition
component by group B’s coefficients while using the observed characteristics of group
A as weights in the coefficient component. Sometimes the average of the results of the
two specifications is reported.

The mapping function F () differs between models as shown in table 1. For the
linear, logit, and Poisson regression models, it is the case that F (Xβ) = Y . For these
models, the maximum likelihood estimates satisfy the estimating equations X ′Y = X ′μ̂,
where μ̂ is a vector of predicted responses, and therefore

∑
Y =

∑
μ̂ and Y = μ̂. Thus

for the linear, logit, and Poisson regression models, mvdcmp will exactly decompose the
difference in the average observed outcomes (Agresti 2002; Greene 2008). However,
though very close, the equality above does not hold for the probit, negative binomial,
and complementary log-log regression models. In this case, mvdcmp decomposes the
difference in average predicted outcomes.

2.2 Detailed decomposition

The decomposition thus far has been described at the aggregate level. Understanding
the unique contribution of each predictor to each component of the difference requires
a detailed decomposition. That is, we wish to partition E and C into portions, Ek and
Ck (k = 1, . . . ,K), that represent the unique contribution of the kth covariate to E and
C, respectively. One may attempt to compute Ek (Ck) by sequentially substituting one
group’s covariates (coefficients) with the other group’s. However, unlike the decomposi-
tion for a linear model, a nonlinear decomposition is sensitive to the order in which the
independent variables enter the decomposition. This problem is referred to as “path
dependence” (see Yun [2004] for an example). A solution to this problem has been
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proposed, involving a strategy of sequential covariate replacement and randomization
of ordering of replacement (Fairlie 2005). This procedure is implemented in the Stata
command fairlie (Jann 2006).

Even and Macpherson (1993), Nielsen (1998), and Yun (2004) suggested simpler
methods using weights. Yun (2004) obtained weights from a first-order Taylor lineariza-
tion of (1) around XAβA and XBβB . The detailed decompositions obtained this way
are invariant to the order that variables enter the decomposition, thus providing a con-
venient solution to path dependency. After linearization, the weight component for E
is

WΔXk
=

βAk

(
XAk

−XBk

)
K∑

k=1

βAk

(
XAk

−XBk

) (2)

and the kth weight component for C is

WΔβk
=

XAk
(βAk

− βBk
)

K∑
k=1

XAk
(βAk

− βBk
)

(3)

where ∑
k

WΔXk
=
∑

k

WΔβk
= 1.0

Thus the composition weights WΔXk
reflect the contribution of the kth covariate to the

linearization of E as determined by the magnitude of the group difference in means
weighted by the reference group’s effect. Similarly, the coefficient weights WΔβk

reflect
covariate k’s contribution to the linearization of C as determined by the magnitude of
the group difference in the effects weighted by the comparison group’s mean. Thus the
weights are proportional to the contributions to the decomposition of the linear pre-
dictor, in which the relative sizes of the contributions to the explained or unexplained
portions of the outcome differential are equal to the relative contributions to the de-
composition of the linear predictor. The weights are invariant to change in the scale of
the covariates. Therefore, the raw difference can be expressed in terms of the overall
components as a sum of weighted sums of the unique contributions.

Y A − Y B = E + C =
K∑

k=1

WΔXk
E +

K∑
k=1

WΔβk
C =

K∑
k=1

Ek +
K∑

k=1

Ck

2.3 Variability in decomposition estimates

The characteristics and effects components do not provide information about the pre-
cision of the contributions to group differences per se. For this reason, it is important
to gauge the sampling variability (asymptotic variance) of E and C, as well as the
detailed components in substantive applications. Because the components used in the
decomposition are functions of maximum likelihood estimates, the delta method de-
scribed by Rao (1973, 321–323) can be used to derive asymptotic standard errors of
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the detailed contributions. Interval estimation and significance tests can be done in the
usual way (see Yun [2005a] for an example). This approach uses expressions for the
gradients of the detailed components with respect to the estimates, in addition to the
variance–covariance matrix of the estimates from each group, as we will show next.

The endowment component is obtained as a weighted sum of the individual contri-
butions, Ek,

E =
K∑

k=1

Ek =
K∑

k=1

WΔXk

{
F (XAβA)− F (XBβA)

}
Interval estimation and statistical hypothesis testing of the components of the detailed
decomposition require computation of the asymptotic variances of the Ek and Ck com-
ponents appearing in the decomposition equation. First, we compute the gradient for
Ek, ∂Ek/∂β′

A, which is a 1×K vector, the lth element of which is

∂Ek

∂βAl

= WΔXk

{
∂F (XAβA)

∂βAl

− ∂F (XBβA)
∂βAl

}
+

∂WΔXk

∂βAl

{
F (XAβA)− F (XBβA)

}
where

∂WΔXk

∂βAl

= I(k = l)
{

XAk
−XBkP

k βAk(XAk
−XBk)

}
− βAk(XAk

−XBk)(XAl
−XBl)

{P
k βAk(XAk

−XBk)}2

and where I(·) is the indicator function. For nonlinear models considered by mvdcmp,

∂F (Xjβj)
∂βl

= f(Xjβj)Xjl
j ∈ {A,B}

Let E = (E1, . . . , EK) denote the K×1 detailed characteristics effect vector, and let
ΣΣΣβA

denote the variance–covariance matrix of βA. The asymptotic covariance matrix
of the detailed characteristics component is

ΣΣΣE = GEΣΣΣβA
G′

E

where

GE =
(

∂E1

∂β′
A

,
∂E2

∂β′
A

, . . . ,
∂EK

∂β′
A

)
is the K ×K gradient matrix.

Following the same logic, the coefficient component can be written as the sum of
individual contributions:

C =
K∑

k=1

Ck =
K∑

k=1

WΔβk

{
F (XBβA)− F (XBβB)

}
Each covariate’s contribution to the overall coefficient component depends on the

parameter vectors, βA and βB . The lth elements of the gradient for Ck are

∂Ck

∂βAl

= WΔβk
f(XBβA)XBl

+
∂WΔβk

∂βAl

{
F (XBβA)− F (XBβB)

}
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and
∂Ck

∂βBl

=
∂WΔβk

∂βBl

{
F (XBβA)− F (XBβB)

}
−WΔβk

f(XBβB)XBl

where

∂WΔβk

∂βAl

= I(k = l)
{

XBk∑
k XBk

(βAk
− βBk

)

}
− XBk

XBl
(βAk

− βBk
){∑

k XBk
(βAk

− βBk
)
}2

and

∂WΔβk

∂βBl

=
XBk

XBl
(βAk

− βBk
){∑

k XBk
(βAk

− βBk
)
}2 − I(k = l)

{
XBk∑

k XBk
(βAk

− βBk
)

}
where I(·) is the indicator function.

Let ΣΣΣβA
and ΣΣΣβB

denote the covariance matrix of the estimates from the group A
and B regressions, and let C = C1, . . . , CK denote the K × 1 detailed coefficient effects
vector. The asymptotic covariance matrix of the detailed coefficient components is then

ΣΣΣC = GCA
ΣΣΣβA

G′
CA

+ GCB
ΣΣΣβB

G′
CB

where

GCj
=

(
∂C1

∂β′
j

,
∂C2

∂β′
j

, . . . ,
∂CK

∂β′
j

)
, j ∈ A,B

is the K ×K gradient matrix and ∂Ck/∂β′
j is the 1×K gradient vector defined above.

Significance tests on individual components, blocks of components, or for the overall
decomposition can be carried out using Wald tests by defining subvectors of E and C
along with the corresponding submatrices of ΣΣΣE and ΣΣΣC. For example, the variance Ek

can be found from the kth element of the main diagonal of ΣΣΣE. The variance estimates
derived above assume that the independent variables are fixed and that groups A and
B are independent; otherwise, they will underestimate the true variances.

2.4 Normalization of dummy variables

The detailed Oaxaca decomposition is not invariant to the choice of the reference cate-
gory when sets of dummy variables are used (Oaxaca and Ransom 1999).3 Particularly,
if a model includes dummy variables, then the sum of the detailed coefficients effects
attributed to the dummy variables is not invariant to the choice of the reference cate-
gory or the omitted category. Suppose that we examine the following regression model
containing dummy variables (d’s) representing a factor with I levels:

y = a +
I∑

i=2

diαi + zγ + ε

3. This invariance pertains to the coefficients contribution, Ck.
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The identification problem is that

I∑
i=2

dBi (α̂Ai − α̂Bi) 	=
I−1∑
i=1

dBi (α̃Ai − α̃Bi)

where α̂ and α̃ are estimates when the omitted category is the first and the last category,
respectively.

Intuitively, the identification problem can be resolved by averaging the coefficients
effects of a set of dummy variables while permuting the reference groups (Yun 2005b).
This is equivalent to computing a normalized equation that can identify the intercept
and coefficients of all dummy variables, including reference groups, by averaging esti-
mates obtained by permuting the reference groups, and then using these along with the
augmented design matrix to perform the decomposition analysis.

The prototypical normalized equation is

y = a∗ +
I∑

i=1

α∗
i di + zγ + ε

mvdcmp offers the option of constructing a normalized decomposition using a practical
algorithm outlined by Yun (2008) that transforms the estimates of the usual regression
equation. This algorithm, initially developed by Suits (1984), transforms estimates (α)
by imposing an ANOVA-type (or centered-effects) restriction,

∑I
i=1 α∗

i = 0. When the
coefficients of the normalized equation are further specified as α∗

i = αi+μα, the solution
for the constraint is

μα = −α = −
I∑

i=1

αi/I

where the coefficient of the reference group is zero, that is, α1 = 0. The normalized
equation will be

y = (a + α) +
I∑

i=1

(αi − α)di + zγ + ε

Following oaxaca (Jann 2008), we use the devcon command (Jann 2005) to construct
the augmented coefficient vectors and covariance matrices, which are input to the de-
composition routine along with the augmented design matrix.

2.5 Syntax

mvdcmp groupvar
[
, reverse normal(varlist1|varlist2) scale(#)

]
:

estimation command depvar
[
indepvars

] [
weight

]
The mandatory groupvar denotes the binary grouping variable. The available esti-

mation commands and options are summarized in table 2. The options of particular
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interest are offset() (described in section 3.3) and scale(). mvdcmp automatically
determines the high-outcome group and uses the low-outcome group as the reference.
This can be overridden with the reverse option. The scale() option is particularly
useful when decomposing small differences because it simply reports results multiplied
by a user-specified value. The normal() option is based on the same option provided
in Jann’s (2008) oaxaca command.

Table 2. Estimation commands and options available in mvdcmp

estimation command Description

regress linear regression model
logit logit model
probit probit model
cloglog complementary log-log model
poisson Poisson regression model
nbreg negative binomial regression model

options Description

reverse reverse the decomposition by switching the
comparison group

normal(varlist1|varlist2) identify dummy-variable sets for ANOVA normalization
scale(#) scale the results; default is scale(1)

3 Examples

3.1 Logistic regression

This first example illustrates the basic syntax of the command for decomposing a dif-
ference in proportions using a logit model. We decompose the observed black–white
difference in the prevalence of first-time premarital births using a logit model with data
on a sample of non-Hispanic whites and blacks from the 1979 National Longitudinal
Survey of Youth (NLSY). We consider a logit model with a set of predictors including
number of family structure changes up to the time of event (nfamtran), dummy vari-
ables for maternal education (medu1 for less than 12 years of schooling and medu3 for
more than 12 years of schooling), family income in thousands of dollars (inc1000), and
mother’s age at respondent’s birth (magebir). We first read in the data, then con-
struct dummy variables for maternal education, and then examine summary statistics
to evaluate compositional differences.
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. use pmbnlsy

. * illustrate logit decomposition

. gen medu1 = 0

. replace medu1 = 1 if medu < 12
(1310 real changes made)

. gen medu2 = 0

. replace medu2 = 1 if medu == 12
(1693 real changes made)

. gen medu3 = 0

. replace medu3 = 1 if medu > 12
(641 real changes made)

The summary statistics indicate large black–white differences in the proportion ex-
periencing a first-time premarital birth (devnt). We observe substantial compositional
differences in number of family transitions, educational attainment, family income, and
mother’s age at the time of the respondent’s birth, with blacks exhibiting lower average
income, lower educational attainment, and a greater number of family transitions.

. by blk, sort: sum devnt nfamtran medu1 medu2 medu3 inc1000 magebir,
> separator(1000)

-> blk = 0

Variable Obs Mean Std. Dev. Min Max

devnt 2287 .111937 .3153579 0 1
nfamtran 2287 .4879755 .9509905 0 10

medu1 2287 .2706603 .4443981 0 1
medu2 2287 .5137735 .4999196 0 1
medu3 2287 .2155662 .4113045 0 1

inc1000 2287 .9960198 .6180757 0 4.9497
magebir 2287 25.4769 5.988704 12.25 46.41667

-> blk = 1

Variable Obs Mean Std. Dev. Min Max

devnt 1357 .559322 .4966515 0 1
nfamtran 1357 .6226971 .9228423 0 7

medu1 1357 .5092115 .5000994 0 1
medu2 1357 .3817244 .4859886 0 1
medu3 1357 .1090641 .3118346 0 1

inc1000 1357 .547693 .4173302 0 3.7501
magebir 1357 24.90985 6.769633 12 53.5
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Next we fit models to gauge differences in returns to risk.

. logit devnt nfamtran medu1 medu3 inc1000 magebir if blk==0

Iteration 0: log likelihood = -801.69896
Iteration 1: log likelihood = -764.8931
Iteration 2: log likelihood = -759.35497
Iteration 3: log likelihood = -759.33443
Iteration 4: log likelihood = -759.33443

Logistic regression Number of obs = 2287
LR chi2(5) = 84.73
Prob > chi2 = 0.0000

Log likelihood = -759.33443 Pseudo R2 = 0.0528

devnt Coef. Std. Err. z P>|z| [95% Conf. Interval]

nfamtran .3159368 .058431 5.41 0.000 .2014142 .4304595
medu1 .6543009 .1482065 4.41 0.000 .3638215 .9447804
medu3 -.24361 .2092747 -1.16 0.244 -.6537809 .166561

inc1000 -.3659532 .1419346 -2.58 0.010 -.6441399 -.0877666
magebir -.006541 .0113161 -0.58 0.563 -.0287202 .0156382

_cons -1.951179 .3384512 -5.77 0.000 -2.614531 -1.287827

. logit devnt nfamtran medu1 medu3 inc1000 magebir if blk==1

Iteration 0: log likelihood = -931.02734
Iteration 1: log likelihood = -892.28956
Iteration 2: log likelihood = -892.22965
Iteration 3: log likelihood = -892.22964

Logistic regression Number of obs = 1357
LR chi2(5) = 77.60
Prob > chi2 = 0.0000

Log likelihood = -892.22964 Pseudo R2 = 0.0417

devnt Coef. Std. Err. z P>|z| [95% Conf. Interval]

nfamtran .1761604 .063537 2.77 0.006 .0516301 .3006907
medu1 .0804944 .1226039 0.66 0.511 -.1598048 .3207936
medu3 -.8089405 .2015699 -4.01 0.000 -1.20401 -.4138707

inc1000 -.776516 .1524453 -5.09 0.000 -1.075303 -.4777287
magebir -.0144374 .0084113 -1.72 0.086 -.0309233 .0020485

_cons .9614928 .2491499 3.86 0.000 .473168 1.449818

We find larger effects of family transitions, larger effects of low maternal education,
smaller effects of high maternal education, and smaller effects of family income among
whites.
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Next we carry out the decomposition. The overall and detailed results are presented
below.

. mvdcmp blk: logit devnt nfamtran medu1 medu3 inc1000 magebir

Decomposition Results Number of obs = 3644

High outcome group: blk==1 --- Low outcome group: blk==0

devnt Coef. Std. Err. z P>|z| [95% Conf. Interval] Pct.

E .11008 .013362 8.24 0.000 .083886 .13627 24.604
C .33731 .019516 17.28 0.000 .29906 .37556 75.396

R .44738 .014598 30.65 0.000 .41877 .476

Due to Difference in Characteristics (E)

devnt Coef. Std. Err. z P>|z| [95% Conf. Interval] Pct.

nfamtran .0053819 .0019315 2.79 0.005 .0015961 .0091676 1.203
medu1 .0043545 .0066454 0.66 0.512 -.0086705 .017379 .97331
medu3 .019537 .0047194 4.14 0.000 .010287 .028787 4.367

inc1000 .078946 .014059 5.62 0.000 .05139 .1065 17.646
magebir .0018565 .0010749 1.73 0.084 -.00025026 .0039633 .41497

Due to Difference in Coefficients (C)

devnt Coef. Std. Err. z P>|z| [95% Conf. Interval] Pct.

nfamtran -.011755 .0072292 -1.63 0.104 -.025924 .0024141 -2.6275
medu1 -.026766 .008918 -3.00 0.003 -.044245 -.0092867 -5.9828
medu3 -.021003 .010899 -1.93 0.054 -.042366 .00036009 -4.6946

inc1000 -.070476 .035964 -1.96 0.050 -.14097 .000013846 -15.753
magebir -.034671 .061941 -0.56 0.576 -.15608 .086734 -7.7498

_cons .50198 .07347 6.83 0.000 .35798 .64598 112.2

We find that differences in effects account for 75% of the observed race differential
in the prevalence of premarital births, with differences in intercepts (baseline logits)
accounting for most of this. Equalizing family income (inc1000) would be expected to
reduce the black–white premarital birth gap by about 18%. A positive Ek coefficient
indicates the expected reduction in the black–white premarital birth gap if blacks were
equal to whites on the distribution of Xk. In this case, shifting the black distribution on
income and higher maternal education to white levels would provide the largest decrease
in the black–white differential. A negative Ck coefficient indicates the expected increase
in the black–white gap if blacks had the same returns to risk, or behavioral responses, as
whites. In this case, we find that if blacks were penalized by family change to the same
extent as whites, the black–white gap would be expected to increase by about 3%. The
protective effects of family income are not as strong for whites as they are for blacks.
If blacks were “protected” from risk to the same degree as whites, the black–white gap
would be expected to increase by about 16%.
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3.2 Normalization

In the example above, two categories of maternal education are used—medu1 (mother’s
education < 12 years) and medu3 (mother’s education > 12 years)—with the reference
category of exactly 12 years of education. In this case, adopting a different reference
category would change both the education effects and the intercept. We overcome this
limitation by first defining a dummy variable corresponding to each level of the factor
and including the complete set of dummy variables in the normal() option.4

. mvdcmp blk, normal(medu1 medu2 medu3): logit devnt nfamtran medu1 medu3
> inc1000 magebir

Decomposition Results Number of obs = 3644

High outcome group: blk==1 --- Low outcome group: blk==0

devnt Coef. Std. Err. z P>|z| [95% Conf. Interval] Pct.

E .11008 .013362 8.24 0.000 .083886 .13627 24.604
C .33731 .019516 17.28 0.000 .29906 .37556 75.396

R .44738 .014598 30.65 0.000 .41877 .476

Due to Difference in Characteristics (E)

devnt Coef. Std. Err. z P>|z| [95% Conf. Interval] Pct.

nfamtran .0053819 .0019315 2.79 0.005 .0015961 .0091676 1.203
medu1 .01749 .0047173 3.71 0.000 .0082439 .026736 3.9094
medu2 -.0072711 .0026092 -2.79 0.005 -.012385 -.0021571 -1.6252
medu3 .013673 .0029876 4.58 0.000 .0078171 .019529 3.0562

inc1000 .078946 .014059 5.62 0.000 .05139 .1065 17.646
magebir .0018565 .0010749 1.73 0.084 -.00025026 .0039633 .41497

Due to Difference in Coefficients (C)

devnt Coef. Std. Err. z P>|z| [95% Conf. Interval] Pct.

nfamtran -.011755 .0072292 -1.63 0.104 -.025924 .0024141 -2.6275
medu1 -.0090538 .0062153 -1.46 0.145 -.021236 .0031281 -2.0237
medu2 .033622 .011764 2.86 0.004 .010564 .05668 7.5152
medu3 -.006896 .0068765 -1.00 0.316 -.020374 .006582 -1.5414

inc1000 -.070476 .035964 -1.96 0.050 -.14097 .000013846 -15.753
magebir -.034671 .061941 -0.56 0.576 -.15608 .086734 -7.7498

_cons .43654 .072496 6.02 0.000 .29445 .57863 97.576

The coefficients for maternal education now reflect the results of model fitting using
an ANOVA-type normalization in which the coefficients in the logistic regression model
sum to zero across levels of maternal education. The model’s constant term thus reflects
a scaled grand mean of the baseline log odds. The transformed augmented coefficients

4. Though the example includes only one set of dummy variables, normal() can handle multiple sets
of dummy variables. If multiple sets of dummy variables are included, then the normalization
for each set should be separated by a pipe symbol, |. Dummy variables for all levels of a factor
must be included in the normal() statement. For example, normal(a1-a3 | b1 b2) indicates that
normalization is to be applied to a 3-category factor denoted by the dummy variables a1, a2, and
a3 and a 2-category factor denoted by the dummy variables b1 and b2.
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and covariance matrix are input to the decomposition routine along with the augmented
model design matrix. It can be easily verified that aggregate effects and the sum of
the characteristics effect of the dummy variables do not change with normalization.
However, the coefficients effect of the constant and sum of the coefficients effect of the
dummy variables do change with normalization.

3.3 Negative binomial regression

Next we illustrate a count model. This example considers a negative binomial model
for the number of abortions occurring to individual women in the NLSY over the period
from 1979 to 1997. It is reasonable to expect that there may be dependence between
the pregnancy outcomes that comprise the pregnancy history for a given woman. This
unobserved heterogeneity is referred to as frailty in demographic research (for example,
Heckman and Singer [1982]; Hougaard [1984]; Vaupel and Yashin [1985]), the effects of
which have been recognized for some time (for example, Blumen, Kogan, and McCarthy
[1955]; Greenwood and Yule [1920]; Strehler and Mildvan [1960]).5

We can build this dependency into the model by specifying a multiplicative fac-
tor v that raises or lowers the expected number of abortions for a specific woman
in the population. The negative binomial regression model assumes that v follows a
gamma distribution normalized to have a mean of 1 with variance α. The resulting
conditional distribution of Y is a Poisson-gamma mixture. Integrating out the random
effect v yields the unconditional distribution for Y (number of abortions), which fol-
lows a negative binomial distribution with mean μ and variance μ + μ2α (for example,
Cameron and Trivedi [1998]; Long [1997]; Long and Freese [2006]). Following the no-
tation of Long (1997), we express a woman’s expected number of abortions under the
negative binomial model as

μ̃ = veXβ

where it follows from the assumptions about v that

E (μ̃) = E(v)eXβ = eXβ = μ = F (Xβ)

The negative binomial and Poisson regression models have the same mean structure,
resulting in identical decomposition equations. However, coefficients and standard errors
from a negative binomial model will differ from those of a similarly specified Poisson
regression model when α > 0.

5. The standard Poisson model assumption equates the mean to the variance, that is, μ = E(Y ) =
var(Y ) = eXβ . Including a frailty term introduces a component of variance, thereby permitting the
variance in Y to exceed the mean. Thus the resulting model handles the potential overdispersion,
or extra Poisson variation, in count data.
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An example using the offset() option

We have used the offset() option in a negative binomial regression model for the
example decomposition below. The offset effectively adjusts the model’s linear predictor
so that covariate effects can be interpreted as changes in the log rate instead of changes
in the log count.6 If the offset is specified, then the expected abortion rate for a woman
is

λ = eXβ

and the expected number of abortions for that woman is μ = λR, where R is the
exposure to the risk of abortion (that is, the number of pregnancies reported by that
woman). In this case, log R is included as an offset in the count model to yield the
predicted log abortion rate for that woman.7

In the case of a Poisson or negative binomial regression model with an offset term,
the decomposition pertains to a difference in aggregate group rates as opposed to a
difference in average counts. We define the overall (or central) rate in group j in the
usual demographic sense as the number of occurrences (total number of abortions)
divided by total exposure to risk (total number of pregnancies) or

λj =
∑

Yj∑
Rj

=
Y j

Rj

=
∑

F (Xjβj + log Rj)∑
Rj

= F (Xjβj + log Rj)/Rj

The decomposition equations for count models—with or without offset terms—can then
be expressed in a unified manner as8

Y A/RA − Y B/RB = F (XAβA + log RA)/RA − F (XBβB + log RB)/RB

We match each group’s offset vector to its respective X matrix in the decomposition.
Thus, with group B as the referent, the characteristics component is

E = F (XAβA + log RA)/RA − F (XBβA + log RB)/RB

and the coefficients component is

C = F (XBβA + log RB)/RB − F (XBβB + log RB)/RB

It can be shown that the decomposition weights WΔXk
and WΔβk

for count models with
offset terms are identical in form to those in (2) and (3).

6. The offset() option is available only for the Poisson and negative binomial models.
7. The offset must be entered as the logged exposure because mvdcmp does not accept the exposure()

option at this time.
8. The offset term is an N × 1 vector of zeros for a model without an offset. That is, log R = 0; hence

R = R = 1 and λ = μ. Future versions of mvdcmp may offer alternative treatments of the offset
term.
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As an illustration, we use a sample of women from the NLSY and decompose the
difference in abortion rates for women who were raised in conservative protestant fami-
lies (consprot=1) and those from other religious backgrounds (consprot=0), including
those with no particular religious upbringing.9 The empirical abortion rates are 10.6
per 100 pregnancies among conservative protestants and 14.1 per 100 pregnancies for
those from other backgrounds, yielding a difference of 3.4 abortions per 100 pregnan-
cies. The decomposition results below are scaled to reflect the impact of differences in
characteristics and effects on the abortion rate per 100 pregnancies.

. use nabort, clear

. mvdcmp consprot, reverse: poisson nabort medu adjinc south urban profam
> books, offset(lognpreg)

Decomposition Results Number of obs = 2807

High outcome group: consprot==0 --- Low outcome group: consprot==1

nabort Coef. Std. Err. z P>|z| [95% Conf. Interval] Pct.

E .012755 .0062229 2.05 0.040 .0005576 .024952 35.839
C .022834 .0099509 2.29 0.022 .0033301 .042338 64.161

R .035588 .0081778 4.35 0.000 .01956 .051617

Due to Difference in Characteristics (E)

nabort Coef. Std. Err. z P>|z| [95% Conf. Interval] Pct.

medu .011296 .0028405 3.98 0.000 .0057285 .016863 31.74
adjinc -.00067618 .0023457 -0.29 0.773 -.0052738 .0039215 -1.9
south .003378 .005004 0.68 0.500 -.0064298 .013186 9.4918
urban .00098114 .00038851 2.53 0.012 .00021967 .0017426 2.7569

profam .0035992 .00084695 4.25 0.000 .0019392 .0052592 10.113
books -.0058235 .002222 -2.62 0.009 -.010179 -.0014683 -16.363

Due to Difference in Coefficients (C)

nabort Coef. Std. Err. z P>|z| [95% Conf. Interval] Pct.

medu .0035006 .027741 0.13 0.900 -.050872 .057873 9.8363
adjinc -.00089086 .0067821 -0.13 0.895 -.014184 .012402 -2.5032
south .022287 .008682 2.57 0.010 .0052703 .039304 62.624
urban -.0011297 .011809 -0.10 0.924 -.024275 .022016 -3.1742

profam .01722 .027402 0.63 0.530 -.036487 .070927 48.388
books -.036944 .014111 -2.62 0.009 -.064601 -.0092859 -103.81
_cons .01879 .044345 0.42 0.672 -.068126 .10571 52.798

We include various measures of socioeconomic background, including family income
(adjinc); respondent’s mother’s education (medu); and a 0–3 scale of presence of books,
magazines, or newspapers (books) in the home during adolescence. We also include
a pro-family attitude scale (profam) constructed as the sum of several NLSY survey
items, as well as dummy variables for urban (urban) and southern (south) residence.
Here we find that 39.6% of the religious background differential in abortion rates can

9. We have excluded women who were never pregnant and therefore never at risk for an abortion.
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be attributed to differences in characteristics, in particular, the religious background;
differences in mother’s education; urban residence; “pro-family” attitudes; and presence
of books, magazines, or newspapers. The contribution due to the difference in the
effects of southern residence (south) and reading materials (books) is also significant,
suggesting a differential salience of regional context and cultural capital on behavioral
outcomes.

4 Discussion

Decomposition techniques have a long history in social-science research, and their popu-
larity is growing partly as a result of the increasing availability of user-friendly computer
routines. We have developed a general-purpose decomposition routine that incorporates
several recent contributions to overcome various problems with ordering the variables
entered into the decomposition (that is, the problem of path dependence) and the sen-
sitivity of the results of the coefficient portion of the decomposition to the choice of
the reference category when regression models include dummy variables (that is, the
identification problem).

This work extends existing Stata packages in important ways because of these refine-
ments and extensions. The mvdcmp command does not provide the full range of mod-
els and decomposition strategies provided by nldecompose (Sinning, Hahn, and Bauer
2008). However, it provides detailed decomposition results and standard errors for an
important subset of those models. It should also be mentioned that mvdcmp provides
a single type of decomposition, referred to as the standard or two-component decom-
position. Although it provides for a reverse decomposition, it could be made more
flexible by offering alternative options, such as the three-way decomposition described
by Daymont and Andrisani (1984).

The programming tasks of the normalization procedure were considerably less daunt-
ing because of the availability of Ben Jann’s (2005) devcon utility. The options for
including normalization were inspired by oaxaca (Jann 2008). Further work remains to
include normalized interaction terms as in oaxaca and covariate grouping as in fairlie
(Jann 2006). We include the same suite of count data models that are available in
gdecomp (Bartus 2006); however, we have added options for model weights and offsets
in these models. It should be straightforward to include options for robust standard
errors and survey adjustments.

Future work will consider methods to decompose the estimated unobserved hetero-
geneity from negative binomial models. We have also extended these methods to other
settings and have working versions of commands for the multivariate decomposition of
discrete and continuous time hazard models as described by Powers and Yun (2009).
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